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• Thermal management systems with high turndown capabilities are

required for future human spacecraft

• Thermal switches are capable of dissipating a wide range of heat

loads in widely varying thermal environments with low SWAP

• Lower mass and higher On/Off conductance ratios are desired

• Available Thermal Switch Technologies:
– Mechanical Thermal Switches

• Paraffin actuated heat switch, CTE-CTSW, SMA-CTSW

– Gas-gap Thermal Switch

• Disadvantages: Complex, expensive, slow response, difficult to manufacture

– Diode Heat Pipe

• Disadvantages: High “Off” conductance, 0g concerns, slow response

• Less complex, lower cost alternatives are desired

Motivation
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Two-phase thermal switch concept

• Two-phase thermal switch consists of a metallic bellows encapsulated 

in a hermetic enclosure

• Uses condensing vapor to both transfer heat and provide pressure for 

expansion and contact

• Lower complexity, mass, and cost with improved performance
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• Works like a vapor chamber or

heat pipe with flexible walls

• Vapor pressure is driving force for

bellows expansion and contact

• Thermal switch “set point” is the

lowest temperature for which the

vapor pressure brings the heat

transfer surface in contract with the

heat sink
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Two-phase thermal switch operation

• One end of bellows is fixed to

enclosure, which is in contact with

heat source

• Other end of bellows is free

• Capillary wick structure connecting

two ends inside bellows

• Heat applied causes working fluid

in bellows to vaporize

• Vapor generated causes bellows to expand until contact with heat sink

• When in contact with sink, vapor condenses and is returned to heat

source through capillary action in wick

• As some heat is transferred, vapor temperature/pressure in bellows

drops – bellows disconnects from sink

• Continued heat application raises temperature and causes bellows to

expand again

• Some heat is transferred, bellows disconnects…



Two-phase thermal switch operation

• In normal two-phase thermal switch operation, bellows 

oscillates in and out of contact with heat sink

• In this way, the vapor temperature inside bellows, and 

thus the heat source temperature, are approximately 

held at a “set-point”

• This set-point is determined by vapor pressure required 

to expand bellows enough to come in contact with sink

• Set point temperature can be manipulated by changing 

pressure of the gas in the enclosure acting against the 

bellows

• For high enough powers, the bellows will not disconnect 

from the sink, and essentially acts as a heat pipe

5
Advanced Cooling Technologies, Inc. TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD



First order performance model

• Static thermo-structural model for predicting thermal switch set point 

based on force balance
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∆𝑦𝑜 =
𝐴𝑐
𝑘

𝑃𝑔 −𝑃𝑣 𝑇𝑜

∆𝑦𝑒𝑥𝑡 = ∆𝑦𝑜 − ∆𝑦𝑇 = ∆𝑦𝑜 −
𝐴𝑐
𝑘

𝑃𝑔 − 𝑃𝑣 𝑇

• Static model does not capture full

dynamic operation of thermal switch

• Provides basis for full dynamic mode

to be developed in the future
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First prototype design

• First prototype designed as a thermosyphon

(no wick) for proof-of-concept demonstration

• Beryllium copper bellows (k = 19 lb/in)

• Stainless steel enclosure

• Copper end caps housing heat source and

heat sink
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First prototype experimental results

• Testing of first prototype demonstrated ability to maintain heat

source set point temperature as heat sink temperature decreases

• Determined heat source set point for several enclosure gas counter

pressures, demonstrating ability to manipulate set point by varying

the enclosure gas pressure

• Tests also showed that heat leaks through the enclosure are

important
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Second prototype design

• Same beryllium copper bellows

• Delrin enclosure to minimize heat leaks

• Copper end caps with incorporated

heat source and heat sink

• Copper wick structure in bellows for

liquid return
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Second prototype design

• Since the two-phase thermal switch is essentially an expandable heat 

pipe, heat pipe limit calculations were performed

• Capillary limit and predicted maximum power calculated

• Additional performance limits calculated at operating power of 100 W

• Predicts two-phase thermal switch to be operating well below all 

limits
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Capillary limit Maximum power

Advanced Cooling Technologies, Inc. TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD



Second prototype experimental results

• Initial tests done heat pipe (against gravity) orientation to demonstrate

wicking and orientation independence

• Tests done at multiple counter pressures to determine set point

temperature

• Some decay in set point temperature (~3°C) as sink temperature

drops due to heat leaks through enclosure
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7 psia counter pressure 10 psia counter pressure
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Second prototype experimental results

• Additional tests performed in 

thermosyphon orientation (gravity 

assisted liquid return)

• Set points similar in both orientations 

–orientation independent operation
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Second prototype experimental results

• Thermal conductance testing of second prototype

– Maximum power applied to determine maximum “On” conductance

– Power reduced until bellows breaks contact to determine heat 

leaks – “Off” conductance

– Heat leaks to ambient characterized

– On/Off conductance ratios then calculated

– Evident that “On” conductance and conductance ratio varies with 

sink temperature due to variable conductance aspect

• Thermal conductance of 0.7 W/K and conductance ratio of 

20:1 demonstrated
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Case
Maximum  

Conductance (W/K)

Minimum 

Conductance (W/K)
Conductance Ratio 

14.7 psia, 0° Sink 0.70 0.04 16.1

14.7 psia, -40° Sink 0.56 0.04 14.8

5 psia, 0° Sink 0.69 0.04 17.2

5 psia, -40° Sink 0.64 0.03 20.1

5 psia, 15°C sink 0.74 0.04 19.9
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Second prototype experimental results

• Examples of thermal conductance measurement for 

second thermal switch prototype
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14.7 psia counter pressure; 0°C sink

5 psia counter pressure; 15°C sink 
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Conceptual next generation design

• Prototype two-phase thermal switches were not optimized for mass, 

but to demonstrate the concept

• A preliminary design was developed for an estimate of the mass of 

an actual device

– Ammonia working fluid

– Stainless steel bellows

– Ceramic enclosure to reduce heat leaks

– Copper end caps

• Total mass of ~61 g much lower than conventional thermal 

switch technologies
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Future work

• Dynamic performance model development
– Transient heat transfer in all components

– Detailed modeling of fluid and vapor flow in bellows

– Couple heat transfer model to dynamic spring model of the bellows

– Changes in enclosure gas pressure due to compression and 

temperature change

– Goal of predicting set point temperatures, thermal conductance, and 
bellows oscillation frequency

• Dynamic performance of two-phase thermal switch is 

complicated and somewhat unintuitive

• A high-fidelity model will be required for use as a design and 

optimization tool

• Model also used to predict fatigue life of bellows

– Two modes of fatigue

• Large amplitude, low frequency cycles (On/Off)

• Small amplitude, high frequency cycles (Oscillation during operation)
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Future work

• Performance improvements

– Decrease “Off” conductance

• Enclosure design and materials – reduce heat leaks

– Increase “On” conductance

• Reduce contact conductance with TIM and mated surfaces

– Optimize wick structure

– Use dynamic model to optimize overall design

• Perform thermal switch life tests

– Evaluate change in performance due to material wear or bellows 

fatigue

17
Advanced Cooling Technologies, Inc. TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD



Conclusions

• Developed a design for a two-phase thermal switch

– Operates in On/Off mode when heat load is removed

– Variable conductance device to maintain set point temperature 

as sink temperature changes

• Initial static model to describe operation

• Prototype demonstration

– Maintenance of set point temperature 

– Change in set point temperature through change of enclosure 

gas pressure

• Clear path for improving On/Off conductance ratio

• Mass benefit over existing thermal switch technologies
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Arsys Parraffin

TS [1]

JAXA Paraffin 

TS [2]
ACT TPTS ACT TPTS Goal

Mass (g) 110 320 ~61 < 75

"On" Conductance (W/K) 1.2 1.6 0.7 1.5

"Off" Conductance (W/K) 0.018 0.012 0.04 0.01

On/Off Conductance Ratio 67 127 20 150

Conceptual design

Measured
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Questions?
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